Daily Question - Pure Mathematics - Day 9

Topic: Parametric Equations - Differentiation

Day 9 Question 1

The curve C shown in Figure 3 has parametric equations

$$x = t^3 - 8t, \qquad y = t^3$$

where t is a parameter. Given that the point A has parameter t = -1,

(a) find the coordinates of A.

(1)

The line I is the tangent to C at A.

(b) Show that an equation for I is 2x - 5y - 9 = 0.

(5)

The line I also intersects the curve at the point *B*.

(c) Find the coordinates of B.

(6)

(Total 12 marks)

Day 9 Questions 2

A curve has parametric equations

$$x = \tan^2 t$$
, $y = \sin t$, $0 < t < \frac{\pi}{2}$.

dy

(a) Find an expression for dx in terms of t. You need not simplify your answer.

(3)

(b) Find an equation of the tangent to the curve at the point where $t = \frac{\pi}{4}$.

Give your answer in the form y = ax + b, where a and b are constants to be determined.

(5)

(c) Find a cartesian equation of the curve in the form $y^2 = f(x)$.

(4)

(Total 12 marks)